PHYSICAL REVIEW B 80, 235404 (2009)

Optical rotation of heavy hole spins by non-Abelian geometrical means
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A non-Abelian geometric method is proposed for rotating of heavy hole spins in a singly positive charged
quantum dot in Voigt geometry. The key ingredient is the delay-dependent non-Abelian geometric phase, which
is produced by the nonadiabatic transition between the two degenerate dark states. We demonstrate, by con-
trolling the pump, the Stokes and the driving fields, that the rotations about y and z axes with arbitrary angles
can be realized with high fidelity. Fast initialization and heavy hole-spin-state readout are also possible.
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I. INTRODUCTION

Electron spins in quantum dots (QDs) are promising can-
didate for implementations of qubits!~3 because of their po-
tential integration into microtechnology. The two spin states
of electron can be mapped directly to the two operational
states in quantum-information processing (QIP). A key ele-
ment for spin-based QIP is the coherent manipulation of the
spin states.*~!® This QIP approach requires not only rotation
of unknown spin states—the heart of spin-based QIP but also
the spin states initialized in a known state and readout of
spins. There has been significant experimental progress in
the demonstration of the key DiVincenzo requirements,'® for
examples, efficient optical methods for initialization and
readout of spins.’*?* Significant theoretical and experimen-
tal effort has been invested in optical manipulation of elec-
tron spin such as by using two Raman-detuned laser pulses, '°
Abelian geometric phase induced by 27 pulses,!? resonant
radio-frequency pulses,'® and so on. Using ultrafast optical
pulses, Press et al.* reported that they have controlled and
observed the spin of a single electron in a semiconductor
(over six Rabi oscillations between the two spin states). Sub-
sequently, the rotations of electron spins about arbitrary axes
in a few picoseconds were also demonstrated in an ensemble
of QDs.!!

In spin-based QIP, in addition to preparing the spin in a
precisely defined state, this state should survive long enough
to allow its manipulations. Therefore a long spin coherence
time is necessary. Different from the conduction electron, a
valence hole has an atomic p orbital, which has negligible
overlap with the nuclei. Consequently, the suppressed hyper-
fine interaction leads to a longer spin coherence time than
that of electron. This may provide an attractive route to hole-
spin-based applications free from the complications caused
by the fluctuating nuclear-spin system. In particular, Heiss et
al.? reported that the spin-relaxation times of holes are up to
270 microseconds in InGaAs QDs embedded in a GaAs di-
ode structure. Besides long coherence times, an equally im-
portant requirement is the ability to manipulate spins coher-
ently. More recently, the high-fidelity hole-spin initialization
by optical pumping,?® optical control and readout of hole
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spin?’ have been demonstrated experimentally. These works
promote the spin of a hole in a semiconductor QD to be the
best position to be a contender for the role of a solid-state
qubit.

When a quantum system governed by a Hamiltonian with
nondegenerate eigenstates undergoes some appropriate cy-
clic evolutions by adiabatically changing the controllable pa-
rameters, besides a dynamical phase, it may acquire a so-
called geometric phase or Berry phase.?® Wilczek and Zee
generalized the geometric phase to degenerate systems, i.e.,
non-Abelian geometric phase.>” The geometric phase differs
from the dynamic phase in that the former depends only on
the geometry of the path executed, being therefore insensi-
tive to the local inaccuracies and fluctuations. They are thus
expected to be particularly robust against noise.30-3¢

Motivated by these works, we propose a method for ma-
nipulating arbitrary rotation of an unknown heavy hole (HH)
spin state in a singly positive charged quantum dot. By ap-
plying an external magnetic field in Voigt geometry, a double
tripod-shaped scheme can be configured. Most importantly,
in contrast to the existing proposals based on electron spin,
the HH spin rotations are realized in terms of the non-
Abelian Berry phase, which is acquired by controlling the
parameters along adiabatic loops, i.e., stimulated Raman
adiabatic passage (STIRAP) (Ref. 37) and fractional
STIRAP3® The STIRAP process can be used to transfer
populations coherently between quantum states through
“dark state” which efficiently suppress relaxation. The geo-
metric phases accumulated during a STIRAP process were
previously investigated for tripod systems’23*3° and
double-A systems.*® In this paper, after briefly reviewing
non-Abelian geometric phase (Sec. II), we discuss the hole-
and electron-energy levels of a singly positive charged QD in
Voigt geometry and the selection rules in Sec. III, and study
the feasibility of initialization by optical pumping. In Sec. IV
we show how to achieve a twofold-degenerate dark states,
and how to implement the rotations about y and z axes by
using the non-Abelian geometric phase produced by the
nonadiabatically coupling between the two degenerate dark
states. The fidelities of these rotations are also discussed in
this section. The readout of spin state is discussed in Sec. V.
In Sec. VI, we end with some remarks.

©2009 The American Physical Society
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II. NON-ABELIAN GEOMETRIC PHASE

Our propositions of rotating the HH spin about y and z
axes are based on non-Abelian geometric phase®® so we start
by recalling the basic facts about non-Abelian geometric
phase.3® We consider an n-fold degenerate eigenspace of a
Hamiltonian H(y,) (k=1,2,...,N) (i.e., the eigenspace in-
formation encoded) depending continuously on parameters
X, Based on the time-dependent Schrodinger equation, we
control the parameters along loops O in an adiabatic fashion
so that the initial preparation can evolve according to

(W () = U(0)s[¥(1=0)). (1)

This transformation, called holonomy, can be computed in
terms of the Wilczek-Zee gauge connection®’

N
U(O),=P exp jg > Adx,. (2)

O k=1

‘P denotes the path-order operator. A’,’(}7 is called the gauge
potential given by

AL =0 ) G
X

with {|y#(x))}:_, being an orthonormal basis of the degener-
ate eigenspace. It is worth noting that the parameter-
dependent Hamiltonian should evolve adiabatically so that
the instantaneous state |W(z)) does not overflow the state
vector space spanned by |¢/). An intriguing feature of the
holonomy U(O), lies in that it depends only on the geometry
of executed path in the space of degenerate states.

III. THE ENERGY LEVELS AND INITIALIZATION

In the scheme of rotating HH spin, the basic idea is to
reconfigure a multilevel system with interacting Hamiltonian
possessing twofold-degenerate dark states. By changing the
Rabi frequencies in adiabatic fashion, we perform a loop in
the parameter space. At both the beginning and the end of the
cycle, we have only the HH spin states (up and down). But
after a loop a non-Abelian geometric phase is accumulated at
HH spin states. Based upon this property, arbitrary rotations
of HH spin can be implemented.

We consider a self-assembled GaAs/AlGaAs QD charged
with single HH.?®?” In the absence of magnetic field, the
lowest conduction-band (CB) level is twofold degenerate
with respect to the spin projection *=1/2. In the valence band
(VB), the hole has a total angular momentum of 3/2, with the
projection m;= = 1/2 (light hole LH) doublet separated by
more than 30-50 meV from the m;= +3/2 (HH) states due
to confinement. It is very large compared to the bandwidth of
the picosecond and femtosecond pulsed laser so one should
be able to separate the HH and LH excitations by picosecond
pulsed fields in practical applications. The spin states of HH
(spin up and down) trapped in the QD, which are denoted by
0y=|U)=|2.3) and [1)=|T)=|3,-3), are our qubit degrees
of freedom. We will perform sequentially the optical initial-
ization, rotations of this spin by non-Abelian geometrical
means and readout of a single hole spin. With ¢~ and o
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FIG. 1. (Color online) An energy-level diagram of a singly
positive-charged quantum dot in Voigt geometry together with op-
tical selection rules: a degenerate HH spin states and two eigen-
states of nondegenerate electron and LH spin states. Solid arrows,
respectively, indicate dipole-allowed optical transitions driven by
the pump [€2,(r)], the Stokes [Q(r)], the driving [Q,(¢)] fields with
o, of, and 7 denoting right-hand, left-hand circular, and linear-
polarized fields. The photon bandwidth of the driving field (Aw,)
should be larger than the electron Zeeman splitting AE, but smaller
than the LH Zeeman splitting (AE| ).

excitations, the only dipole allowed optical transitions from
the valence HH states to the conduction-electron states are
%,% 15,%) and %,—%), and the light hole states
cannot be excited because of the frequency selection. The
angular momentum restriction inhibits optical coupling be-
tween the two HH spin states. Consequently, the structure
can be described by two degenerate independent two-level
systems and the spin-flip Raman-scattering transitions are
ideally dark.?® The dark transitions should become bright so
as to implement spin-state initialization, rotations, and read-
out. The problem can be solved by applying a magnetic field
in the Voigt geometry (x direction). The magnetic field lifts
the Kramer degeneracy of the LH and electron and recon-

figures the eigenstates as |x=); y=( %% * %,_%))/\E, and

[x ). =( %,% + |%,—%))/\e‘“2 (parallel or antiparallel to the
magnetic field direction x) while keeping the degeneracy of
the HH with a negligibly small in-plane g factor.”*! The HH
spin states remain unaffected by the magnetic field. A double
tripod-shaped system is therefore configured, and the energy-
level diagram and the associated selection rules are repre-
sented in Fig. 1. In the rotations of the spin state, the state
|x=)1 1 is used as an ancillary level and it is presented by |a).
The transitions from the VB states |0), |1), and |a) to the CB
states e ,) can be excited by the pump (o~ -polarized), the
Stokes (o*-polarized), and the driving (s-polarized) fields,
respectively.*> The dark transitions therefore become bright
and it is possible to initialize and rotate the HH spin states.
The photon bandwidth of the driving field (Aw,) can be con-
trolled in a way such that it is larger than the electron Zee-
man splitting AE, but smaller than the LH Zeeman splitting
(AE;y),* the excitation of state |x+); can be thus ignored
safely.

The initialization of HH spin can be accomplished by op-
tical pumping.'”-?® For example, the spin-up HH state can be
prepared by only applying the Stokes field. The electron is
excited from the VB band state to two CB band states |e,) or
le;) and one spin-up HH is left. Exciton (electron-hole pair)
recombination occurs between the CB band electron and the
VB HH with spin down or up while the electron recombined
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FIG. 2. (Color online) The population of the states |0) and |1) as a function of time with o* continuous illumination. Different
initial-population distributions are considered: (a) poy(r=0)=0 and p;;(t=0)=1.0, and (b) pgy(t=0)=p;(r=0)=0.5. The values of parameters

are explained in the text.

with |T) hole will be excited again. Since the pump field has
not been applied, the resident hole remains in spin-up state
|TT). Conversely, the HH can also be prepared in spin-down
state |U> by only applying the pump field. To assess the
efficiency of optical spin preparation, we have performed
numerical simulations using the Liouville equation for
the density matrix for the four-level system as shown in
Fig. 2. We have assumed that four exciton recombining chan-
nels (from two CB electron states to two VB spin states)
proceed incoherently and they are equal to each other
[1/2y=800 ps (Ref. 26)]. The magnetic field and the spin-
flip rates for hole and electron are taken as B,=55 mT,
y;,lz'y;e':l ms,?® and the Rabi frequency as 1.0y. The
HH spin state initialization with a fidelity close to 1
[~99.95%, we define the fidelity of the hole-spin initializa-
tion as —(pgo—pi11)/(poo+tp;) for o* polarization with
poo(p11) being the population of state [0)(|1))] is possible to
be achieved within a few times the inverse of the exciton
recombining rate (~1.6 ns) in the QD structure in Voigt
geometry. The initialization of HH spin here is realized based
on the fact that the magnetic field applied in Voigt geometry
reconfigures the electron eigenstates, which is different from

Refs. 17 and 26, where the initializations are realized based
on spin precession.

IV. ARBITRARY ROTATIONS BY NON-ABELIAN
GEOMETRICAL MEANS

It is well known that, with two noncommutable rotations
about two axes, any rotation can be implemented as a com-
posite rotation.*> Here we design two noncommutable rota-
tions about y and z axes and compose general rotations from
them. In the following, based on non-Abelian geometric
phase, we first show how to rotate the HH spin about y axis
and then explain how to control the rotation about z axis with
the relative phase between the Stokes and the driving fields.
As a result, any rotations of the HH spin can be realized.

A. Rotation about y axis

In order to rotate the HH spin about y axis, we apply the
pump field, the Stokes field (along to z direction) and the
driving field (along to x direction) to excite the correspond-
ing transitions (as shown in Fig. 1). The Hamiltonian in the
interaction picture and in the rotating-wave approximation
(RWA) is given by (A=1)

H(t)= (A, - Ap)| (1] + (A, - Ap)|a><a| - Ap|€1><€1| - (A, + A)les)es| - Qp1(1)|€1><0| - 0)]ey)
X(1] = Qg (t)]er)al - sz(l)|6’2><0| = Qo (0)]ex)(1] = Qp(0)]er)al + Hee., 4)

where the half Rabi frequency is defined as €, (?)
:(ek|ﬁ-lzz‘,,(s,d)(t)|0(1 ,a))/2 with (i being the dipole moment,
p, s, d denoting the pump, the Stokes, and the driving fields,
and k=1,2. A, 5= 0p(5.0)= (0,1 = 0y o)) is the detuning and
A=w, —w, =|g|usB; is the electron Zeeman splitting with
g, and up representing Landé factor of electron and Bohr
magneton, respectively.

When the pump, the Stokes, and the driving fields are
tuned to match the conditions A,=A=A;#-A/2 (three
fields are tuned to three-photon resonance but they are not at
the middle point of the two electron Zeeman splitting levels)
and €;(1)/Q;(1)=C [for simplicity, we choose C=1 and

denote Q,(1)=Q,,(1)=Q,(1)], one can easily find from the

interaction Hamiltonian (4) that the interacting system has
two degenerate dark states

|D,) = cos 6(1)|1) —sin 6(t)|a), (5)

|D,) = cos ¢(#)|0) — sin @(t)sin 6(¢)|1) — sin @(t)cos O(t)|a),
(6)

where the mixing angle 6() and the additional mixing angle
¢(t) are defined as
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0,0 90
tan a(t) = Qd(l), tan QD(I) = V’/m. ( )

It is well known that the exciton recombination occurs only
if there is electron excited to the CB states |e1,2>. The
twofold-degenerate dark states |D1,2>, which are known as
trapped states, receive no contributions from the CB electron
states [see Egs. (5) and (6)]. Hence the rotation of HH spin
about y axis is robust against the exciton recombination pro-
cess and thus leading to high-fidelity operations. It is also
worth noting that, in the absence of the three fields, i.e., all
the parameters [actually the angles 6(¢) and ¢(z)] are fixed to
zero, the previous eigenstates coincide with the two spin
states [D;(0))=|T) and [D,(0))=|{). When the three fields
are applied adiabatically and hence the angles 6(¢) and ¢(r)
change adiabatically, the non-Abelian geometric connection
components can be calculated, according to Eq. (3), and we
have

A=Ayd0=~isin ¢(t)o,df (8)

with o, being the y-component Pauli matrix. The related
unitary operation is

U(0) = exp{— icryf sin (p(t)d@] =R\(B), 9)
o

where the rotating angle B is given by
B:J sin @(7)d 6. (10)
o

Similar degenerate dark states and non-Abelian geometric
connection have been realized for quantum optics system
such as ion trap,* atoms,®* and superconducting
nanocircuites.>> However, in the QD structure under consid-
eration, the non-Abelian geometric connection A is based on
HH spin states.

For a quantitative analysis of the rotating angle S about y
axis, we assume that the pump, the Stokes and the driving
fields have Gaussian shapes as (1) =QY exp[—(t+7)?/ 7],
Qp(t)zﬂg exp(=r*/ ), and Qs(t)zﬂg exp[—(t—1y)?/ 7] with
7 and 7, being, respectively, the pulse widths and the delay.
Figure 3 shows that the evolution of the rotating angle S
about y axis in unit of 7 as a function of delay 7. In the
interaction, the time-dependent Hamiltonian should be per-
formed sufficiently slowly. According to the condition for
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FIG. 3. (Color online) The rotating angle B about y axis in units
of 7 as a function of the delay 7,. The values of parameters are
explained in the text.

adiabatic passage,37 we take 927'2 Q?T: QgTz 50> 1, which
ensures no transition between the dark and bright states (not
given in this paper). Figure 3 shows clearly that the rotating
angle B is delay dependent. It goes up successively with
increasing value of the delay, and then reaches its maximum
value, /2, when the delay 7, is large.

Thus we have shown that the rotation of hole spin about y
axis can be implemented by using the non-Abelian geometric
phase. The rotation is determined only by the global property
and does not depend upon the details of the evolution path in
the parameters space. All the conditions discussed above are
exactly parallel to those in the dynamical schemes using the
off-resonant Raman transitions.'? In both cases, the excited
states are only weakly populated while the physical mecha-
nism for the weak population is quite different.

B. Rotation about z axis

As suggested in Ref. 32, by setting (,(1)=0 and changing
adiabatically ) (r) and (1), the rotation about z axis can be
achieved by making use of the Abelian geometric phase in
our QD system. However, by involving the non-Abelian geo-
metric phase, here we suggest another method for rotating
the hole spin about z axis. An important feature of this rota-
tion is that the rotating angle about z axis is not geometric
phase dependent, it is controlled by the relative phase be-
tween the Stokes and the driving fields. To do so, we set
Q,(t)=0 so that the spin-down state |0) is decoupled, and
assume the phase of the driving field is zero, the relative
phase ¢ is therefore the phase of the Stokes field. The time-
dependent Hamiltonian H(z) in the interaction picture and
RWA takes the form

H(1) = (Ay— Aya)al - Afe;)er] = (Ag+ A)ley)ea| — Q1) (|e)al + ex){al) — Q(D)exp(— i) (|e 1| + |ex)(1]) + Hec.,

where ¢ is the relative phase between the Stokes and the
drive fields. In the derivation of Hamiltonian (11), the con-
dition €;;/Q;,=C=1 is applied. When the Stokes and the

(11)

driving fields are controlled to satisfy two photon resonance,
only one dark state (|D;(#))) exists. The hole spin cannot be
rotated by non-Abelian geometrical means. Fortunately,
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FIG. 4. (Color online) (a) The shapes of the Stokes and the driving fields defined by Eqs. (15) and (16). (b) The geometric phase 7 in
units of 7 as function of the delay between two pulses 7, with Qgrz Q?T= 50. The values of parameters are explained in the text.

however, when the two fields are tuned to the middle point of
the two electron Zeeman-splitting levels, there is another
dark state.** The twofold-degenerate dark states are

|D, (1)) = cos A(t)e'?|1) —sin 6(1)|a), (12)

|
|Dﬂﬂ>=;§am¢hﬂk0—kﬁ)+ﬁn@Ukosﬂﬂb)

+sin @(t)sin 6(r)e?|1), (13)

where the mixing angle 6(¢) and the additional mixing angle
o(r) related to the electron Zeeman-energy splitting A are,
respectively, defined as

00 e —22 14
0 T Bk + 020

tan 0(r) =

A similar form of double degenerate dark states in double-A
atomic scheme has been obtained.*® However, in our QD
structure the degenerate HH spin-based dark states stem from
electron Zeeman splitting.

In adiabatic limit [the time derivative of the mixing angles
0(t) and ¢(r) are small compared with the splitting of eigen-
values, given by ZV/Z[Qﬁ(t)+Qf(t)]+(A/2)2], only the tran-
sitions between the degenerate dark states |D ()} and |D,(1))
should be taken into account, and the nonadiabatic coupling
of states |[D,(#)) and |D,(t)) to other states (the expressions
have not given in this paper) can be safely ignored.®

(D2|D1)=—sin @(1)6(r) also exhibits that a nonadidabatic
transition between the twofold-degenerate dark states may
occur. Although the dark state |D,(z)) receives contribution
from the CB electron states [see Eq. (13)], we note that the
electron magnetic-dependent Zeeman-energy splitting is in-
dependent of time. At the beginning and end of the adiabatic
process, we have A2>Q§(Z)+Q§(I), which therefore leads to
|@|=/2. The CB electron states have no influence on the
final dark state |D,(+%)). In other words, there is no electron
in the CB states when the interaction is finished.

Next, we will show how to translate the phase ¢ into the
HH spin state |T) thus leading to the rotation about z axis
with angle ¢. Recalling the fact that, in the subspace, HH is
prepared with spin up, namely, |D,(0))=|1). The Stokes and
the driving fields are applied in the counterintuitive order
while they terminate with a constant ratio of their amplitude
so that the phase ¢ can be introduced into the HH spin state.
This extension of STIRAP is called fractional STIRAP,

which has been suggested to create the coherent atomic su-
perpositions in a robust way.’® As shown in Fig. 4(a), the
driving field consists of two parts, one with the same time
dependence as the Stokes field and the other coming earlier,
for example,

Q,(1) = QY exp(- /7), (15)

Q1) = Qg{exp[— (t+ 7)Y 7] +exp(=2/7P)}.  (16)

Here Qg and Qg are amplitudes of the Stokes and the driving
fields, 7 and 7, are, respectively, pulse widths and delay be-
tween the two parts of driving field. During the interaction,
the mixing angle 6(¢) varies from 0 to 7/4. According to the
theory of non-Abelian geometric phase, after the interaction,
we have3?40

| .
|W(+00)) = —E[e’d’(sm ¥y +cos yp)| 1) + (sin ;- cos yp)|a)],
\
(17)
where 7y, is given by

B FJQ A2 Q(0)dQy(t) = Qu(1)dQ(1)
17 o 020) + 020 20020 + Q2] + (A12)°

(18)

Equation (17) exhibits that the relative phase ¢ translates to
the HH spin state |ﬂ) via fractional STIRAP. If y; can be
accumulated to /4 by controlling the Stokes and the driving
fields, after the cycle evolution, the HH spin will return to
the spin-up state with the phase ¢. As a result, the rotation of
HH spin about z axis is realized and the varying rotating
angle can be obtained by changing the relative phase ¢,
namely, the phase of the Stokes field.

It should be noted that vy, is gauge invariant, it depends
upon the delay 7,.>*4" In Fig. 4(b), we plot the evolution of
Yy in units of 7 as a function of 7,. We take the Rabi fre-
quency amplitudes as: Qg:Qg:O.S ps~!, the pulse width pa-
rameter 7=100 ps. The magnetic field is taken as B,
=55 mT (we take the in-plane g factor of electron as g¢
=-0.21,*" then the electron Zeeman splitting A=1 GHz).
With these parameters, the adiabatic condition is held and the
governing Hamiltonian evolves adiabatically. As shown in
Fig. 4(b) vy increases from 0 by degrees with the growing of
the delay, and reaches its maximum value, 7/4, when the
delay 7, is large. Thus, the relative phase ¢ can be used to
control the HH spin rotation about z axis.
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TABLE 1. Fidelity of selected rotations of HH spin.

Fidelity
Rn(¢) TO/ T (%)
R(m/2) 15 99.96
R.(7/2) 6.5 99.99
R (m/2) 99.94

By combining the above rotations about y and z axes, any
rotation can be implemented. For example, rotation about x
axis can be realized by Rx((j)):R;(ﬂ'/ 2)R,(P)R(/2). Our
rotation procedure is sensitive to the non-Abelian geometric
phase and the relative phase between the Stokes and the driv-
ing fields. Moreover, the non-Abelian geometric phase is in-
dependent of pulse areas and dependent on the ratios 7y/ 7,
QY/A, and QJ/A. Thus it is robust against the fluctuation of
the pulse shapes, pulse areas, and noise.

C. Fidelity

Based on the non-Abelian geometric phase, arbitrary ro-
tations of HH spin are possible. But how about the degree to
which our approximate description matches the actual behav-
ior of the system? The fidelity is a measure of how accurate
the target gate is implemented and it is defined as F(U)
=[(W|U'U,| W), where U,, is the target operation, U is the
actual operation, and the average is taken over all input spin
states.** As is well known, the STIRAP technique is robust
against moderate experimental parameter errors.’’ The im-
perfections in the HH spin-states rotation come predomi-
nately from the exciton recombinations from |e; ») to |0), |1),
and |a>. In the calculations, we include these recombinations
at rates 1/2y=800 ps. The Rabi frequency amplitudes, the
pulse widths and the magnetic field are same as those in
Secs. IV A and IV B. Compared with the pulse widths, the
electrons- and holes-spin relaxations time are too long, and
we therefore ignore them in the above calculations. Typical
rotation fidelities, listed in Table I, are on the order of 99.9%.
With non-Abelian geometric means, our method is robust
against the exciton recombinations. Arbitrary rotations of
HH spin states are realized with high fidelity.

V. READOUT

The accurate measurement of the spin state of each qubit
is essential in a quantum-computation scheme. In our
scheme, the o*-polarized Stokes (the o~-polarized pump)
field can only excite the HH state with spin down (up). The
measurement of the HH spin states therefore can be achieved
by applying a o* or o~ polarized continuous laser field.
When the o*-polarized field is applied, for example, if the
spin is rotated to | ), the QD will emit a single photon from
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the |e,,)—|{) transitions, which can be detected using a
single-photon counter.*

VI. SUMMARY

Before summary, we should point out, in the QD structure
considered, the spin states of heavy hole are our qubit de-
grees of freedom. Compared with electron, longer spin-
coherence time can be achieved because of the suppressed
hyperfine interaction. It is therefore feasible to realize more
single-qubit  holonomic  gates  within  decoherence-
recombination time than that of electron. What should also
be noted is that, during the evolution, the QD system remains
in dark states, the dynamical phases acquired in the evolution
are zero. It is not necessary to remove the dynamical phases.
A distinguishing feature of our proposal is that, in the rota-
tion about z axis, the rotating angle is not determined by the
non-Abelian geometric phase, it is controlled by the relative
phase between the Stokes and the driving fields ¢, which is
convenient to control experimentally.

To summarize, we consider a singly positive-charged
quantum dot, and demonstrate sequentially the initialization,
the optical rotations of HH spin with non-Abelian geometri-
cal means, and readout of a single hole spin. Together with a
magnetic field applied in Voigt geometry, the quantum dot
system can be reconfigured as a double-tripod scheme. When
the pump, the Stokes, and the driving fields are tuned to
satisfy certain conditions, the QD system has twofold-
degenerate dark states. Based on the non-Abelian geometric
phase produced by the nonadiabatic coupling between the
two dark states not only can the HH spin be rotated about y
axis with stimulated Raman adiabatic passage but also the
relative phase between the Stokes and the driving fields can
be translated into the hole-spin state with fractional stimu-
lated Raman adiabatic passages, leading to the implementa-
tion of rotation about z axis. Therefore the key step of optical
arbitrary rotations of HH spin with high fidelity for QIP can
be implemented by non-Abelian geometrical means. It is, in
principle, useful for nanoscale spintronic devices and spin-
based quantum-information processing.
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